Сайтқа кіру Тіркелу

Математика курсын оқытудағы пәнаралық қатынастар

МАТЕМАТИКА КУРСЫН ОҚЫТУДАҒЫ ПӘНАРАЛЫҚ ҚАТЫНАСТАР
Пәнаралық қатынастар ұғымына сипаттама берілген, ғылым аралық қызмет түрлері көрсетілген, жаратылыстану-математикалық цикліндегі пәндерді оқытуда пәнаралық байланысты қалай жүзеге асыру айтылған, математика пәнімен информатика және физика пәндерінің пәнаралық байланыстары туралы ұғым берілген, дифференциалдық теңдеулерді биологиялық процесте қолданылуы көрсетілген.

«Педагогикалық сөздікте» пәнаралық қатынас түсінігін оқулық бағдарламаның өзара келісімі деп анқтаған. Пәнаралық қатынастар оқушылардың білімін жүйелендіруге көмек жасап және оларды нақты әлемнің толық жағындағы диалектиканың өзара байланыс құбылысын танып білуге қалыптастырады.
Пәнаралық қатынастардың әзірленуі оқушылардың білімінің ұтымды жағдайын, тәрбиеленуін және дамуының пайда болуына көмек көрсетеді.
Мынадай ғылым аралық қызметтердің түрлерін ажыратуға болады:

1. Бір объектті әр түрлі ғылымдарды кешендік оқытуда.
2. Әр түрлі объектті оқытудағы бір ғылымның әдісін басқа ғылымда қолдануы.
3. Әр түрлі объектті оқытудағы бір теорияны әр түрлі ғылымдарда қолданылуы.
Білім мазмұнын жаңарту пәндердің циклі үшін оқу материалы мазмұнының жоғары ғылыми, әрі оқушыға түсінікті деңгеймен оның ғылыми логикасына сәйкес баяндалуын қамтамасыз ететіндей жүйесін анықтау міндетін жүктейді. Бұл міндет циклдегі әр пән бағдарламасымен оқулықтың цикл пәндерінің терең өзара байланысын қамтамасыз ететіндей болып құрылуы арқылы шешілмек.

Ғылыми дүниетанымды қалыптастыру оқытылатын барлық пәндерді қамтитын күрделі үдеріс. Соның ішінде, әсіресе, жаратылыстану цикліндегі пәндердің, оқушылардың санасына әлемнің біртұтастығы туралы түсінікті қалыптастырудағы маңызы ерекше. Ал табиғат құбылыстары жайлы біртұтас ғылыми көзқарасты қалыптастыру осы пәндердің арасындағы өзара байланысты жүзеге асыру арқылы мүмкін болады.
Жаратылыстану-математика цикліндегі пәндерді оқытуда пәнаралық байланысты жүзеге асыру, әсіресе, осы пәндердің мазмұнын жаңарту жағдайында өзекті мәселеге айналып отыр. Себебі, бұл пәндердің өзара байланысы оқу материалының мазмұны мен оның өтілу ретін анықтаудағы аса маңызды белгісі болып табылады.

Пәнаралық байланыстар дегеніміз жаратылыстану-математикалық цикліндегі пәндер мазмұнында табиғаттағы нақты өзара байланыстардың реттеліп бейнеленуін қамтамасыз ететін дидактикалық шарт.
Оқу мазмұнын қалыптастыру барысында негізгі салмақ орта оқу орындарының барлық түрлеріне бағытталып, солардың әлеуметтік сұраныстарынан құралады. Оқу мазмұны педагогикалық категория ретінде әлеуметтік сұраныстың жай ғана көшірмесі болмауы қажет. Ол осы сұраныстың педагогикалық моделі болуы тиіс. Оқу мазмұнының қалыптасуының алғашқы сатыларында пәнаралық байланысты анықтау оқу мазмұнының құрылысында пәндік құрылымға дейінгі жалпы теориялық ой деңгейінде қарастырылады.

Математикалық ерекшеліктердің арқасында ол үшін пәнаралық қатынастардың жүзеге асырылуы өмірмен тәжірибенің, оқытудың байланысының қағидасы талаптарының бірі болып саналады.
Математиканы оқытудың мақсаттарының бірі, бұл оқушыларды диалектика - материалистік дүниетанымының қалыптасуы, мұнда оқушылардың нақты әлемді, диалектикалық өзара байланыс құбылысын түсінуге мүмкіншілік берудегі пәнаралық қатынас басты рөл атқарады.
Оқушыларды диалектика - материалистік дүниетанымға тәрбиелеуіне математика сабағында физика, химия ғылымдарымен байланысты есептер шығаруы көп көмек көрсетеді. Мұндай есептерді таңдағанда және шешкенде математика сабағында оқушылардың математикалық дайындығын ескеру қажет.
Пәнаралық қағидаларды жүзеге асыру оқу бағдарламаларынан басталады. Сондықтан алдағы уақытта осы теориялық зерттеулерді іс жүзіне асыру бағытында жұмыс жүргізілуі керек, ол үшін:

• оқу пәндерінің жаңарған мазмұнындағы байланыстыра оқытуға болатын неғұрлым маңызды, өзекті тақырыпты айқындау;
• оқу пәндерінің құрылымдық логикаларын осы пәндердің өзара байланысы тұрғысынан қарап, қажетті түзетулер енгізу;
• курстардағы өзара байланыстыра өтілетін тақырыптарды уақыт бойынша жүйелеу қажет.
Енді атап айтқанда математика пәнінің басқа пәндермен байланысын қарастыратын болсақ, қазіргі заманда кез келген пәнді тиімді оқыту үшін компьютерлік техника маңызды рөл атқарады және информатика курсы математика курсымен тығыз байланыста. информатиканы көп математизациялау қажет емес, себебі, информатиканы оқыту математикалық, есептерді шешуден шығады. Пәнаралық байланыс әр пәннің оқу процессінде үйретуші компьютерлік бағдарламалармен жабдықтандырылғадығынан оқу құралдарын пайдалануды байқалады.
Пәнаралық байланысты былай да көрсетуге болады:

1. Есептерді шешу барысында алгоритмді сипаттау және құрастыру, оларды іске асыруда математикамен байланысты.
2. Электронды - есептеу машынасының құрылымы, техникалық құрылымдарының өзіндік жұмыс режимі олардың сипаттамасы және параметрлерін оқып үйренуде физикамен байланысы.

3. Алгоритмдік тілдерді және электронды-есептеу машынасының тілдік жабдықталуы – лингвистикалық аспектімен байланысы, мәтіндерді шифрлау, мәтінді аппараттарды өңдеу және синтаксистік талдау, аударма жасау, сөздікті ұйымдастыру және сөзді іздестіру.
4. Бағдарламалау негізінен үйренудегі байланыс: лингвистикалық мәдениеттің қалыптасуы, ол ойдың қысқа және логикалық бейнеленуі, мәтіндердің негізгі және құрама бөліктерін көрсету, талдау жүргізу, бақылау, анықтамалық ақпараттармен жұмыс істеу.
5. Электронды-есептеу машынасын пайдалану заңдылықтары басқа пәндеріне компьютерді техникалық оқу құралы ретінде тиімді пайдалану қадамдары болып табылады.

Енді дифференциалдық теңдеудің биологиялық процессте қолданылуын қарастыратын болсақ, мұнда дифференциалдық теңдеулердің көмегімен жаратылыстану ғылымдағы ең негізгі проблемалардың бірі өзімізді қоршап тұрған табиғат құбылыстарының кейбір жасырын сырының қалай ашылғанын, оның өмірде қалай пайдаланылатынын көрсетуге болады.

Соның бірі, мысалы, дифференциалдық теңдеуді мекендес өсіп өну (популяция) санының қарапайым моделі ретінде көрсету жатады. Мекендес өсіп өну саны – қоршаған ортаны қорғаудың, яғни биоэкологияның ең маңызды мәселесі болып табылады. Мекендес өсіп өнудің математикалық моделін құру биологиялық түрдің сан жағынан өсуінің жылдамдығын анықтайтын есеп ретінде қарастырады. Егер мекендес өсіп өнуді жекеленген, қоректік қоры шектеусіз өсім басы ересек особьтардың санына пропорционал деп есептесек, онда мекендес өсіп өну санының динамикасы мынадай қарапайым дифференциалдық теңдеумен анықталады:
(1)
мұндағы – кез келген уақыт моментіндегі мекендес өсіп өну саны.
Алғашқы моментінде мекендес өсіп өну саны болсын десек. Сонда (1) теңдеу бірінші ретті сызықты біртекті болғандықтан оның шешімі былай болады:
(2)
Бұл теңдеу мекендес өсіп өну өсуінің экспоненциалдық формуласы деп аталады. Пропорционалдық коэффициентның қабылдайтын мәнінің әр түрлі жағдайына байланысты мекендес өсіп өну санының динамикасы да әр түрлі болады. Егер >0 болса, онда уақыт өткен сайын мекендес өсіп өну өседі; егер болса, онда ол бастапқы қалады; егер <0 болса, онда уақыт өткен сайын мекендес өсіп өну нөлге дейін кемиді, яғни қарастырып отырған түрі жойылып кетеді.

Сонымен қорытатын болсақ дифференциалдық теңдеу арқылы биологиялық эксперименттердің көмегімен анықталмайтын тіршілік құбылыстарының жасырын сырын ашуға болады екен.
Келесі бір мәселе, математика мен физиканың байланысына тоқталатын болсақ, ол үш түрге бөлінеді:
1. Физика алдына шешімі математикалық ілімдер мен әдістер арқылы ізделінетін есептер қояды. Сол арқылы математикалық теориялық негізінің дамуына жағдай жасайды. Мысалы, Ньютон динамикасы.

2. Математикалық есептеулері, математикалық теориялық ілімдері физикалық құбылыстарға талдау жасауға қолданылады, бұл әлемнің физикалық бейнесін дамытуға және физикалық проблемалардың шығуына септігін тигізеді. Мысалы, Лоренц түрлендірулері салыстырмалы теориясының шығуына және салыстырмалықтың инварианттылығын дәлелдеуге себепкер болады.

3. Физикалық кейбір теорияның дамуы математикаға негізделеді, ал кейін бұл теория физика арқылы дамыды. Мысалы, Максвел теңдеулері.
Осы айтылғандардан математика мен физиканың арасындағы табиғи байланыстың бар екенін көреміз.
Қорыта келе, пәнаралық байланыс педагогикалық деңгей секілді кешендік түйінді мәселені құрайды, оның шешуіне көп аспектілі білім қажет. Оқытудың мақсатымен есебінен шыға, ол оның мазмұнының пәндік құрылымы мен органикалық байланысы бар әдістерінде, формасында және оқытудың құралында да осыдан шығады.

Әдебиеттер
1. Б.А.Найманов «Дифференциалдық теңдеулер» (әдістемелік нұсқаулар) Павлодар, 1991ж
2. Информатика, физика, математика журналы 97-№2 (11-13 беттер) Қазақбаева Д. «Пәнаралық байланысты жүзеге асыру»
3. ИФМ журналы 94-№6 (13-15 беттер) Б.Айтуллина, В.Павловская «Пәнаралық байланыс»

Екібастұз қаласы
Академик Сәтбаев атындағы
Екібастұз инженерлік-техникалық институтының колледжі
директордың оқу ісі бойынша орынбасары
Орынбаев Бахтияр Көмекұлы

Назар аударыңыз! Жасырын мәтінді көру үшін сізге сайтқа тіркелу қажет.
Кері қайту
Ұқсас жаңалықтар:
«Қызықты математика» авторлық бағдарлама

«Қызықты математика» авторлық бағдарлама

Бұл бағдарлама математика саласы бойынша оқушы білімін тереңірек меңгертуге арналады. Математика - бастауыш сыныптағы негізгі де маңызды негіздердің...
Физика сабағында ақпараттық технологияны қолдану

Физика сабағында ақпараттық технологияны қолдану

Физика пәні мұғалімі: Батырбекова Л.М....
Математика пәнін оқытуда СТО технологиясының тиімділігі

Математика пәнін оқытуда СТО технологиясының тиімділігі

ШҚО, Ұлан ауданы, Манат ауылы, Ақжолов атындағы негізгі мектептің математика пәні мұғалімі Нурханова Зульфия Турусбековна...
Бейнелеу өнері сабағында пәнаралық байланыстың  маңызы үлкен

Бейнелеу өнері сабағында пәнаралық байланыстың маңызы үлкен

Шалмагамбетова Гаухар Мейрамовна Жезқазған қаласының жалпы білім беретін №10 орта мектебінің бірінші санатты бейнелеу өнері, сызу және технология...
Мектеп математика курсындағы пәнаралық есептер және оларға қойылатын талапт ...

Мектеп математика курсындағы пәнаралық есептер және оларға қойылатын талапт ...

Қызылорда облысы, Қазалы ауданы, Әйтеке би кенті Тәуелсіздіктің 20 жылдығы атындағы №266 мектеп-лицей Есқалиева Гүлнұр Бақытбекқызы Егеменді...
Пікірлер: 0
Пікір білдіру
Ақпарат
Қонақтар,тобындағы қолданушылар пікірін білдіре алмайды.
Абайдың қара сөздері, Ашық сабақ, Бастауыш, Информатика, Мақала, Мұқағали Мақатаевтың өлеңдері, Ресей, Русский язык, Сабақ жоспары, Физика, Химия, абай құнанбаев қара сөздері, абай құнанбайұлының қара сөздері, ана тілі, ағылшын тілі, бала-бақша, балабақша, бастауыш сынып, баяндама, биология, география, дүниетану, ертегі, жыр, математика, презентация, сайыс, сайыс сабақ, сауат ашу, сценарий, тарих, тақпақ, технология, тәрбие сағаты, Қазақ әдебиеті, Қазақстан, қазақ тілі, қазақ тілінен сабақ жоспары, қысқа мерзімді жоспар, өлең

Барлық тегтерді көрсету
×